Basic Multifrequency Tympanometry:
The Physical Background

by
Joachim Gruber

In tympanometry the mobility of the tympanic membrane is measured while the membrane is exposed to a (sinusoidal)
tone of frequency f.

In the ear, the tympanic membrane is mechanically coupled with the middle ear ossiclesto the oval window -the
interface between middle and inner ear. It isthis entire system (membrane, middle ear, oval window) that isforced into
oscillation. The oscillation is detected by a microphone. (A more detailed description isgiven in " Tympanometry in just
seconds” -http://www.grason-stadler.com/tymp.html.)

A linear theory used to evaluate the signal from the microphone is presented here. The response of alinear system
when driven by a periodic oscillation can be expressed in terms of the resistance with which the system respondsto the
excitation (called "impedance") or in terms of the ease with which it is set into motion (called "admittance"). Both
expressions of the response are presented here next to each other in atable.

An excedllent summary of the results of the linear theory, its practical application and the reliability of multifrequency
tympanometry in diagnosing middle ear diseasesis. Robert H. Margolis, LisaL. Hunter, Acoustic Immittance
Measurements, Chapter 17 of Audiology: Diagnosis, by Ross J. Roeser, Michael Valente, Holly Hosford-Dunn (eds),
Thieme 2000.

e Chapter | , "Forced Linear Oscillator”, explains the definitions, assumptions and equations used to describe a
linear oscillator forced into periodic movement by an external periodic force.
e Chapter I, " Acoustics', uses the theory presented in chapter | to derive atheory for multifrequency

tympanometry.
e Chapter |1, " Parameter determination from multifrequency tympanometry"
< 111.1," Single resonance frequency system", explains how system parameters can be extracted from the
multifrequency response of a single resonance system.
< [11.1.1, "Example", illustrates a system having just one resonance frequency.
e 111.2, "Coupled Systems’' .
e 111.2.1, "Example: 2-Component system with subsystems arranged in parallel” presents results of a system
with two single-component systems arranged in parallel
e 111.3, "Fit of measured tympanometric data with linear model" analyzes an actual multifrequency tympanogram.
1. Forced Linear Oscillations
Mechanical impedance M echanical admittance

Assumption 1 (Hooke's law)

Let m be amass on aspring and F the force resulting from
an elongation z of the spring. Then Hooke's law
approximates the force F as being proportional to z
Fyu=-Dz (@)

D isthe Hook spring constant (compliance).

Let t bethetimevariable.

Assumption 2 (velocity proportional friction)
When the mass moves, it is slowed down by friction R. Let
the friction force be proportional to the speed of the

movement v = 92

dt
Fr=RZ 2
where R 1sthefriction coefficient.




Definition 1 (periodic force)

Let

F = FodWt = Fg [cos(wt) + i sin(wt)] (3)

be aforce wiggling at mass m with frequency o = 2xf.

i =V-1 istheimaginary unit. Fg isthe amplitude of the force
keeping the mass m in oscillatory mation.

Towiggle at mass m, force F has to be the sum of

. forceFm=m d—zz,

dt?
. thefrictional force Fg = R %f and
. the force of the spring Fy =D z.

Theorem 1 (equation of motion)
The resulting movement of the mass can be calculated from
theforcebalance F = Fy, + FR + Fp, i .€.

mdZ + RUZ + p 7z = Fyent

diz dt @

Assumption 3 (periodic movement)

Let mass m oscillate with frequency w and let this
oscillation be out of phase (in comparison with the

oscillation of force F) by a

M echanical admittance

z=z5ew-a) (5)
The velocity v of mass misthen

v=0Z =z dw-a) (6)
Abbreviate

Vi =i wzg et (7)

Theorem 2 (system response)
The response of system (4) can be characterized by the ratio
between force F and velocity vy

Theorem 2a (alter native system response)
Alternatively, the system response can be characterized by theratio
between velocity v and force F

e2=R+i(wm-D) ® L ei=G+iBpw (8)
Proof Proof:
Plugging (5) into (4), and then dividing both sides of (4) with The reciprocal of (9) is
dz _; i(Wt-a) yi _ D .
dt—|Wzoe( a) yields R ‘i MW+ iwzg @lwta)
R+iw(m-L2)=_"0&" Fo € 9 R2+(mw-D)*  R2+ (mw-D)? Foe™
w2 iwzgel(wt-a) w w

Substituting (3) and (7) in (9) give us (8).

Substituting (3) and (7), this can be written as
G +i Biota :%eia




Definition 2 (impedance)
VEfe'a =Zm (10)

Thisratio (10) will be called mechanical impedance Zp,.
Thereal and imaginary parts of the sum have the following
names:

resistance R

reactance Xiota = Xm + X¢

Definition 2a (admittance)
Vf oia = ¥
Fea=y (107

In (10" the following abbreviations are used:

admittanceY =——21 —_{R+i (-mw+D)}
R2+(mw—%) w

conductance G = %
R? + (mw-v—[\)l)
susceptance Bigia = Bm + B, with

mass reactance X, = mw mass susceptance Bm:-%
RZ + (mw- D)
w
. b D
compliant reactance X, = -2 . _ W
w compliant susceptance Be=——W———
R2 + (mw- D)
W
[I. Acoustics

Acoustic impedance

LetdV beafast (adiabatic, i.e. heat non-dissipating) change

of avolumeV of air and dP the corresponding pressure
change.

Acoustic admittance

Definition 3 (compressibility «)
The adiabatic compressibility of air is defined as

d7V:_
Y =k dp (12)

Theorem 3
The compressibility can be expressed in terms of the

density r of theair and the speed of sound cin air:

k= rilcz (12)

Proof can be found in textbooks of physics.

Let volume V be approximated by a cylinder with base A
(and aheight h).

Definition 4 (cross section A of air volume)

Then volume change dV can be expressed as change z of
the cylinder height

dV=Az. (13)

The corresponding pressure change dP can be written in
terms of the force F on A

dp=F (14)




Definition 5 (Hooke's constant D for air, acous-
tic stiffness K g)
Combining (11) - (14) the force F resulting from the

volume change dV can be written similarly as Hooke's law

Fy=-Dz (15)
with the abbreviation
2
p="% p2=k A2 unitsof D: 9 (16)
V &

where (see (11), (12)) Ky = dp
dv

Acoustic admittance

Assumption 4 (friction R)
Let thevolume V of air dissipate energy similarly asthe
mass mon aspringin (2):

= d72
Fr Rdt

Assumption (rigid body of oscillating masses)
The periodic oscillation of the air in the ear canal wiggles at
the tympanic membrane, the middle ear ossicles etc. This
has been ignored in the system dealt with until now.

Let usassumethat al those masses comprise arigid entity
meff that oscillates as awhole and in phase with the air in
the ear canal. In other words, the masses of which mgstis
c}?mposed do not oscillate separately and out of phase with
theair.

Definition 7 (oscillating mass m)

Thetotal oscillating mass m istherefore the massr V of
theair plus the effective mass:

m=r V + Mg

Thus, the force to overcome theinertiaof mis

- md’z
Fm=m 2 17

Theorem 4 (equation of motion)

Asin the case of the mechanical oscillator, the resulting
movement of the air particlesin volume V can be calculated
from the force balance F = Fy, + Fr + F, where

F=Ap=A pee™

d?z dz - -

mYZ + RUZ 4+ D 7= A ppdW 18

o2 at z=Apg (18)

m&Z 4+ RE 4 A2Kaz= A poet (18a)
a? dt

For a periodic pressure being applied by aloudspeaker to
the ear cand air and mass megsf (assumption 3), the system's
response is analogous to (8) (note that again F = A p):

APga-R+i D
Tfea—R"'l(mW‘ W)l (19)

Definition 6 (volume velocity U)
Volume velocity U is defined as the volume that flows
through the air canal cross section per unit time:

Avi=ZiwAzgew=jU

Acoustic admittance




It is customary to replace v in (19) with iU/A. Deviding
both sides of (19) by A2 we get the following expression
chaaracterizing the system response

Leia:ﬂﬂ(wm-—D )

iy A2 A2 wA2 20

Definitions 7 (Rg, acoustic inertance M)

(1) To simplify the form of the equations, we will
introduce the abbreviation

=R
Ra—Az.

(2) Likewise, Kingler and Frey (1962, p. 190, Eq. 8.14)
introduced the definition of acoustic inertance

M =T
A2’

Using (16), the last term on the right hand side can be
smplified:

e _K,

wV  w

D _r
wA?

(21)

Theorem 5 (system response)

Thefinal expression for the system responseis (20). In
analogy with (10) the ratio (22) is called acoustic
impedance Z,

Zaziéa

iU (22)

Theorem 5a (alternative system response)
Alternatively, the system response can be characterized by the
inverse of ratio (22)

Ya=Ga+i Ba:i%eia (22"

Definition 8 (acoustic impedance Z,, egs. (23))
Theimpedance Z; given in (22) has areal and an imaginary
part (see (20)).

Za=Ra+i (Xmat+ Xca) = ohm

unit: — 9
cm?' s

With definitions 7.1 (acoustic resistance Ra) and 7.2
(acoustic inertance M) and definition 5 (acoustic stiffness
Ka) the acoustic impedance can be written in analogy with
definition 2, and the following names are given:

R e resistance
Xa= XmaT Kag ceveeerirrnieeiiieeninenineanns reactance
Xma=W--=WM ... mass reactance

............. compliant reactance

Definition 8' (acoustic admittance Y, eqgs. (23'))

Ya: Ga+ i Ba: Ga+ i (Bma+ Bca), vee. Unit Cngs :Wll
10° 1 = 1 mmho
w
__ Ra
B conductance
R3 + X3
_ Xa
AT - susceptance
R + X%
Bma = - Xma mass susceptance
R + X3
ca=- Xea .. compliant susceptance
RZ + X3

or stiffness susceptance
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Fig. 1: GgRgand BjRaasafuntion of X gRa. At [Xg/Ra=1GzRzand By
Rg have the same size. At resonance GgR5 = 1 and BjR; = 0.
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Fig. 2: Oscillation plotted in { GgR5, BgRa} plane lies on acircle with radius
1/2, because GaR2+ BaRa2 = (1/2)2 for all X fRa. The angle a will be used to
calculate Ry from G and B,




Fit of Rz to multifrequency tympanogram Gy(f) and
Ba(f)

Definition of a (see Fig. 2)

J1-1
GaRa 5% cosa (24)
B.Ry= % sna (25)
From (23), (24) follows
Ga_ 1+cosa 26
Ba sina (26)
Proof:

(24) _2GiRa— 1+cosa

(25) 2BdRa sna

Multifrequency tympanogramm gives G4(f) and B4(f) . Thus (26) is
afunction of the immission frequency f. (26) can be solved for a
asafunction of f.

With (25) Ry can befitted to the tympanogram

_sina(f)
Rl = 55,5 (27)

Definition 9 (resonance frequency wy)

L et the frequency at which the reactance X5 and susceptance B vanish be called resonance frequency w; of the system:

wm ="' ¢ Solving for w,
rA WV g ¥

r
w; = 2pf, = A cy/ v (28)

At resonance w; conductance and resistance are simple reciprocals of each other:

G, = 1
a R,
Data At high positive or negative ear canal pressures the tympanic membraneis
re2=14210°_9 (d1) almost fixed and the middle ear is nearly motionless (mggf » 0, Rg » 0) the
Atf = 226 Hz cm & admittance Y 5 » B » Bea (the latter because Xima << Xca) With
w=20f=14210°s? d2 Ba= WY
rc

Since B¢ can be determined experimentally, the ear canal volumeV can be

Plugging (d1) and (d2) into the definition of above
gging (d1) (d2) Xea calculated from this equation. At f = 226 Hz

_ré _ 1051 o 3ems
Xea= wy o —Cmsv. | (d3) Bea =10 o V.
A volumeV =1 cm3 of air has acompliant reactance A volume V = 1 cm3 of air has a compliant susceptance

Xz - 100 _ 16%hm Ba=10° % = 1 mmho
m* s




I11. Parameter determination from multifrequency tympanometry

1.1 Single resonance frequency system

Fit of V and m/A2 to X4/Ra
Use definitions (23) of Xmgand Xca

Xma=w M (23.1)
A2

r c2 K,

=~ =_"Ra 232

@z T (23.2)

* Plotlog[X4 as afuntion of logf as shown below.
» Intersections of asymptatic lineswith y-axis at logf =0 give
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Fig. 3: Extrapolation of Xc4(f) and Xm(f) yields V and m/A.




Another possibility: Ear canal cross section A together with oscillating mass m can be fitted to the resonance frequency f;.
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Fig. 4: Plot of contours of constant resonance frequency f, as afuntion of the ear canal radiusr and the oscillating effective mass mgfs.

Example marked by arrows: for r = 0.37 cm and mgff = 0.002 g the resonance frequency isf; = 1140 Hz.

As the contour plot Fig. 4 shows, a possible choice for
fr = 1140 Hz

is

A=r2p=(037cmf’p

r = 0.00129 g/cm3

V =1.36cm3

m =rV + mgg = (0.0018 + 0.002) g = 0.0038 g.

111.1.1 Example

Choice of dependence of V on ear canal pressure p:
V _nl
V(p) :?0 (1+e7w)

_Inl
m(p) =1 V(p) + Mt € 7wy

Dataused in Example:

Vo = 1.36 cm3, TW = 40 daPa = 400 Pa (1daPa= 10 Pa)
mesf = 0.002 g, Ra= 1000 ohm, r = 0.37 cm, r = 0.00129 g/cms3.

(29)

(30)

(3D
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Fig. 5: Plot of the two components of the reactance as functions of
immission frequency f. Heavy curves represent mass reactances, light curves
compliant reactances. Curve parameter is the ear canal pressure. Curves are
plotted for p =0 and p = 400 daPa. (for implementation of p see (29) and
(30)).
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Fig. 6: Plot of total reactance as a function of immission frequency f for
fixed ear canal pressuresp = 0 and p = 400 daPa. At resonance X5 is 0.

Definitions:
e resonance: Xz =0.
e eqguivalence: [Xg/Ra= 1.
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Fig. 7: Plot of total reactance as a function of ear canal pressure p. Curve
parameter isthe immission frequency f. Curves are plotted for f =113 Hz and
the following 6 octaves above 113 Hz.
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Fig. 8: GgRaasafunction of both ear canal pressure p (daPa) and immission frequency f (log f isused, with f in Hz).
Left: 3D-plot, p is plotted along the x-axis (range: -400 daPa £p £ 400 daPa), log f is plotted along the y-axis (range: 2 £ log f £ 3.7).
Right: 2D-plot GgR4(p) with f as parameter, i.efor f fixed at 226 Hz and the 5 following octaves above 226 Hz.
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Fig. 9: Detail of Fig. 9 near resonance at zero ear cana pressurep = 0.
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Fig. 10: BgRaasafunction of both ear canal pressure p (daPa) and immission frequency f (log f is used, with f in Hz).

Left: 3D-plot, p is plotted along the x-axis (range: -400 daPa £p £ 400 daPa), log f is plotted along the y-axis (range: 2 £ log f £ 3.7).

Right: 2D-plot B gR4(p) with f as parameter.
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Fig. 11: Detail of Fig. 10 near equivalence frequency at zero ear cana pressurep = 0.
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Fig. 12: YgRgasafunction of both ear cana pressure p (daPa) and immission frequency f (log f is used, with f in Hz).

Left: 3D-plot, p is plotted along the x-axis (range: -400 daPa £p £ 400 daPa), log f is plotted along the y-axis (range: 2 £ log f £ 3.7).

Right: 2D-plot Y gR4(p) with f as parameter.
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Fig. 13: Detail of Fig. 12 near resonance at zero ear canal pressurep = 0.




Graphical Construction of GgRa(log f), BaRa(logf)
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Fig. 14: Graphica explanation of shapes of curvesin Figs. 8 - 11:

Lower plots: Xa/Raas functions of f for fixed p = 0 and p = 400 daPa (see Fig. 6).
Upper plots: GgRa and BgR4 as functions of X g/Ra (see Fig. 1).

To obtain avalue GgR5 for agiven immission frequency f

(2) choosef and read X5/R5 from lower plot (follow line 1 in direction of arrow),
(2) then read GgRa for Xg/Rg (follow line 2 in direction of arrow).




[11.2 Coupled Systems
(fit of acoustical behavior with an electrical network model after Zwislocki)

in series

Fig. 15 Electrical system composed of 2 subsystems (1) and (2)
arranged in series.

parallel 1

Fig. 15': Electrical system composed of 2 subsystems (1) and (2) arranged in
parallel.

Definition 10: complex electrical resistance
-"impedance", Z

2
LE+RrR A+ 1)=7

dt2 dt G (32)

Observation: Ohm's Law for complex resistance.

Let U be the voltage between entrance and exit terminals of
asystemi and g the éectric chargein system i. Then the
charge g is proportional to the applied voltage U:

Ziq1=U 33

Z;02=U (33)

The same istrue for acomposite circuit:

Zq=U (34

Observation: Observation:

The flow of charges through subsystems arranged in series
isthe same in each subsystem:

=Y1 4=
a=2%.d

Z (35

Chargesin parallel subsystems add up in composite circuit:

q=0q1+ 0. (35)

Theorem 6: Composite resistances

The composite resistance Z of a system composed of
subsystems arranged in seriesis:

Z=721+2, (36)
Proof:
Definition of Z: q =% (37)

From (35) follows: U1 + U2 = q (Z1 + Z»). Comparison with (37),
the definition of Z (i.e. withU =q Z) followsZ =Z; + Z».

Theorem 6': Composite resistances

The composite resistance Z of a system composed of subsystems
arranged in parallel is calculated as:

Ya=Ya + Yo (36)

Proof:
Plugging in observation (35') into Ohm's Law (34)

z X + Yy =u. Simplification yields proof L + L =1
Z 2 Z 22 Z




11.2.1 Example: 2-Component system with subsystems arranged in parallel (Fig. 15")

Data used for calculations (values chosen arbitrarily, i.e. not with respect to a particular electrical middle ear model):
(Mathematica MR 1, 2 "2-Component System")

meff1:= 0.1 g; Ry := 21000 ohm;
meff2 := 0.01 g; R :=300 ohm;

ri:=0.4cm;

ro :=0.37 cm;

V1:=0.9cm3; Vo :=0.2cm3;
r1:= 0.001 g/cm3; r 2 :=0.00129 g/cm3;

TW =40 daPa.
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Fig. 16: Conductance Gz and susceptance B plotted as functions of immission frequency f. Because of (36") Gy = Gq1+ Ggp, and By =B + Byp.
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Fig. 17: Resistance of the composite system as a function of immission frequency f.
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Fig. 18: Oscillation of composite systemin { G, Bg} plane. The Fig. 19: Oscillation of composite system plotted in { GaRa, BaRa} planelies
point { Gg,(f) By(f)} runs on the curve in the direction indicated by the | on circlewith radius 1/2. The reason for thisis the linearity of the composite
arrows, when f runs from 100 Hz to 4111 Hz. The circle has been system: The oscillation of each subsystem lies on thiscircle (see Fig. 2), thus
drawn to emphasize non-circular form of curve. the linear composition of these oscillations lies on that circle, too. The curve
drawn by hand indicates how the point { GgRg, BgRa} runs on the circle when f
runs from 110 Hz (arrow near {0.6, 0.4}) to 4060 Hz (arrow ending near {0.1,
-0.1}).

I[11.3 Fit of measured tympanometric data with linear model

InFig. 17-17, R.H. Margolis and L.L. Hunter present a multifrequency tympanogram (R.H. Margolisand L.L. Hunter,
Acoustic Immission Measurements, Ch. 17 of Audiology: Diagnosis, R.J. Roeser, M. Vaente, H. Hosford-Dunn, Thieme,
New York, 2000). At an ear canal pressure p = - 250 daPa the tympanic membrane had the highest mobility. Gz and By
measured at this ear canal pressure are plotted as functions of the immission frequency f in Figs. 20 and 21.

Fig. 22 results when these B are plotted vs. Ga

These datawill be analysed with alinear model. This meansthat the deviation of the curvein Fig. 20 from acircle will be
interpreted as resulting from a frequency dependent resistance R4(f) according to (27). This may or may not be justified. Itis
simply amethod of condensing the measured datainto a set of equations (the ones developed in this paper) and corresponding
parameters (necessary to eval uate the equations).

After calculating Ry(f) with (27) (Fig. 23), BaRais plotted vs. GgRg, resulting in Fig. 24. These data plotted are plotted { GaR5,
BaRg plane. The curvein Fig. 24 drawn by hand indicates how the point { GaRg, B gRg} runsfirst clockwise and finally
counterclockwise on the circle when f runs between 230 Hz (arrow at beginning of clockwise part) and 1930 Hz (arrow at end of
counterclockwise part). The circle crosses the abscissa (GgRgaxis) at f = 1350 Hz.
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Fig. 20: Conductance G, as afunction of theimmission frequency f. [ Fig. 21: Susceptance By as a function of the immission frequency f. The ear
The ear canal pressureis - 250 daPa. Data from Margolis and Hunter. | canal pressureis - 250 daPa. Data from Margolis and Hunter. Resonance
frequency f is defined here as the frequency at which Bz = 0 (fy = 1350 Hz,
dashed line).

G a(mmho)
L= L. I =L |
[
B ,(mmho)
]

/ /mm. /’\f'\
\ /

Ba (mmho)
X
R a(ohm)

’ \‘\__/ Jl
100 \ !
o |
-2 |
4
an i
4 n 500 1000 1500 Zoaoa
f(Hz
z 4 [ g \_ (H2) J
Ga(mmho)
- ) Fig. 23: Resistance extracted from oscillation presented in Fig. 22 with

) o method given by eqg. (27). Immission frequencies f; used by multifrequency
Fig. 22: By(f) plotted vs. Gq(f). B(f) and G4(f) as presented in Fig. | tympanometer are marked as dots in lower part of graph. They start at fj = 226
20, 21 (from Margolis and Hunter). The curve starts at fj = 226 Hz Hz and end at f = 2000 Hz. Dashed line marks resonance frequency fres = 1350
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Fig. 24: By(f)Ry(f) plotted vs. G4(f)Ry(f). Datafrom Margolis and
Hunter.
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