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In tympanometry the mobility of the tympanic membrane is measured while the membrane is exposed to a (sinusoidal)
tone of frequency f.

In the ear, the tympanic membrane is mechanically coupled with the middle ear ossicles to the oval window -the
interface between middle and inner ear. It is this entire system (membrane, middle ear, oval window) that is forced into
oscillation. The oscillation is detected by a microphone. (A more detailed description is given in "Tympanometry in just
seconds" -http://www.grason-stadler.com/tymp.html.)

A linear theory used to evaluate the signal from the microphone is presented here. The response of a linear system
when driven by a periodic oscillation can be expressed in terms of the resistance with which the system responds to the
excitation (called "impedance") or in terms of the ease with which it is set into motion (called "admittance"). Both
expressions of the response are presented here next to each other in a table.

An excellent summary of the results of the linear theory,  its practical application and the reliability of multifrequency
tympanometry in diagnosing middle ear diseases is:  Robert H. Margolis, Lisa L. Hunter, Acoustic Immittance
Measurements, Chapter 17 of Audiology: Diagnosis, by Ross J. Roeser, Michael Valente, Holly Hosford-Dunn (eds),
Thieme 2000.

• Chapter I , "Forced Linear Oscillator", explains the definitions, assumptions and equations used to describe a
linear oscillator forced into periodic movement by an external periodic force.

• Chapter II, "Acoustics", uses the theory presented in chapter I to derive a theory for multifrequency
tympanometry.

• Chapter III, "Parameter determination from multifrequency tympanometry"
• III.1,"Single resonance frequency system", explains how system parameters can be extracted from the

multifrequency response of a single resonance system.
• III.1.1, "Example", illustrates a system having just one resonance frequency.

• III.2, "Coupled Systems" .
• III.2.1, "Example: 2-Component system with subsystems arranged in parallel" presents results of a  system

with two single-component systems arranged in parallel
• III.3 , "Fit of measured tympanometric data with linear model" analyzes an actual multifrequency tympanogram.

1. Forced Linear Oscillations

Mechanical impedance

Assumption 1 (Hooke's law)
Let m be a mass on a spring and F the force resulting from
an elongation z of the spring. Then Hooke's law
approximates the force F as being proportional to z
FH = - D z                                                          (1)
D is the Hook spring constant (compliance).

Mechanical admittance

Let t be the time variable.

Assumption 2 (velocity proportional friction)
When the mass moves, it is slowed down by friction R. Let
the friction force be proportional to the speed of the

movement v = dz
dt

FR = R dz
dt

                                                         (2)

where R is the friction coefficient.



Definition 1 (periodic force)
Let
F = F0eiω t = F0 [cos(ωt) + i sin(ωt)]                 (3)

be a force wiggling at mass m with frequency f .
i = -1  is the imaginary unit. F0 is the amplitude of the force
keeping the mass m in oscillatory motion.

To wiggle at mass m, force F has to be the sum of

• force Fm = m d
2z

dt2
,

• the frictional force FR = R dz
dt

 and

• the force of the spring FH = D z.

Theorem 1 (equation of motion)
The resulting movement of the mass can be calculated from
the force balance F = Fm + FR + FH, i.e.

m d
2z

dt2
 + R dz

dt
 + D z = F0eiωt                             (4)

Assumption 3 (periodic movement)
Let mass m oscillate with frequency ω and let this
oscillation be out of phase (in comparison with the
oscillation of force F) by α
z = z0 ei(ωt - α)                                                    (5)

Mechanical admittance

The velocity v of mass m is then

v = dz
dt

 = i ω z0 ei(ωt - α)                                      (6)

Abbreviate
vf = i ω z0 eiωt                                                   (7)

Theorem 2 (system response)
The response of system (4) can be characterized by the ratio
between force F and velocity vf

F
vf

 eiα = R + i (ω m - D
ω

)                                    (8)

Theorem 2a (alternative system response)
Alternatively, the system response can be characterized by the ratio
between  velocity vf and force F

vf
F

 e- iα = G + i Btotal                                         (8')

Proof:
Plugging (5) into (4), and then dividing both sides of (4) with

 dz
dt

 = i ω z0 ei(ωt - α) yields

R + iω (m - D
ω2

) = F0 eiωt

iωz0ei(ωt - α)
                          (9)

Substituting (3) and (7) in (9) give us (8).

Proof:
The reciprocal of (9) is

R

R2 + (mω - D
ω

)
2

 + i 
 - mω + D

ω
R2 + (mω - D

ω
)
2
 = i ω z0 ei(ωt-α)

F0eiωt

Substituting (3) and (7), this can be written as

G + i Btotal = vf
F

 e- iα



Definition 2 (impedance)

F
vf

 eiα = Zm                                                         (10)

This ratio (10) will be called mechanical impedance Zm.
The real and imaginary parts of the sum have the following
names:

resistance R

reactance Xtotal = Xm + Xc 

mass reactance Xm = m ω

compliant reactance Xc =  - D
ω

 

Definition 2a (admittance)

vf
F

 e- iα = Y                                                        (10')

In (10') the following abbreviations are used:

admittance Y = 1
R2 + (mω  - D

ω )
2
 {R + i (- mω + D

ω
)}

conductance G = R

R2 + (mω - D
ω

)
2

susceptance Btotal = Bm + Bc, with

mass susceptance Bm = -  mω
R2 + (mω - D

ω
)
2

compliant susceptance Bc = 
D
ω

R2 + (mω - D
ω

)
2

II. Acoustics

Acoustic impedance

Let δV be a fast (adiabatic, i.e. heat non-dissipating) change

of a volume V of air and δP the corresponding pressure
change.

Acoustic admittance

Definition 3 (compressibility )
The adiabatic compressibility of air is defined as

δV
V

 = - κ δP                                             (11)

Theorem 3
The compressibility can be expressed in terms of the
density ρ of the air and the speed of sound c in air:

κ = 1
ρ c2

                                                  (12)

Proof can be found in textbooks of physics.

Let volume V be approximated by a cylinder with base A
(and a height h).

Definition 4 (cross section A of air volume)
Then volume change δV can be expressed as change z of
the cylinder height
δV = A z .                                                              (13)

The corresponding pressure change δP can be written in
terms of the force F on A

δP = F
A

                                                                    (14)



Definition 5 (Hooke's constant D for air, acous-
tic stiffness Ka)
Combining (11) - (14) the force F resulting from the
volume change δV can be written similarly as Hooke's law
FH = - D z                                                               (15)
with the abbreviation

D =  
ρ c2

V
 A2 = Ka A2                     units of D: g

s2
     (16)

where (see (11), (12)) Ka = 
δp

δV

Acoustic admittance

Assumption 4 (friction R)
Let the volume V of air dissipate energy similarly as the
mass m on a spring in (2):

FR = R dz
dt

Assumption (rigid body of oscillating masses)
The periodic oscillation of the air in the ear canal wiggles at
the tympanic membrane, the middle ear ossicles etc. This
has been ignored in the system dealt with until now.

Let us assume that all those masses comprise a rigid entity
meff that oscillates as a whole and in phase with the air in
the ear canal. In other words, the masses of which meff is
composed do not oscillate separately and out of phase with
the air.

Definition 7 (oscillating mass m)
The total oscillating mass m is therefore the mass ρV of
the air plus the effective mass:
m = ρ V + meff

Thus, the force to overcome the inertia of m is

Fm = m d
2z

dt2
                                                             (17)

Theorem 4 (equation of motion)
As in the case of the mechanical oscillator, the resulting
movement of the air particles in volume V can be calculated
from the force balance F = Fm + FR + FH, where
F = A p = A p0eiωt

m d
2z

dt2
 + R dz

dt
 + D z = A p0eiωt                              (18)

m d
2z

dt2
 + R dz

dt
 + A2Ka z = A p0eiωt                                  (18a)

For a periodic pressure being applied by a loudspeaker to
the ear canal air and mass meff (assumption 3), the system's
response is analogous to (8) (note that again F = A p):

A p
vf

 eiα = R + i (m ω -  D
ω

)  .                                 (19)

Definition 6 (volume velocity U)
Volume velocity U is defined as the volume that flows
through the air canal cross section per unit time:
A vf = i ω A z0 eiωt = i U

Acoustic admittance



It is customary to replace vf in (19) with iU/A. Deviding
both sides of (19) by A2 we get the following expression
chaaracterizing the system response

p
i U

 eiα = R
A2

 + i (ω m
A2

 - D
ω A2

)                              (20)

Definitions 7 (Ra, acoustic inertance M)

(1) To simplify the form of the equations, we will
introduce the abbreviation

Ra = R
A2

.

(2) Likewise, Kinsler and Frey (1962,  p. 190, Eq. 8.14)
introduced the definition of acoustic inertance

M = m
A2

.

Using (16), the last term on the right hand side can be
simplified:

D
ω A2

 = 
ρ c2

ω V
 = Ka

ω                                                    (21)

Theorem 5 (system response)
The final expression for the system response is (20). In
analogy with (10) the ratio (22) is called acoustic
impedance Za

Za = p
i U

 eiα                                              (22)

Theorem 5a (alternative system response)
Alternatively, the system response can be characterized by the
inverse of ratio (22)

Ya = Ga + i Ba = i Up0
 e-iα                                (22')

Definition 8 (acoustic impedance Za,  eqs.  (23))
The impedance Za given in (22) has a real and an imaginary
part (see (20)).

Za = Ra + i (Xma + Xca), . . . . . . . . . . . . .
unit: g

cm4 s
 = ohm

With definitions 7.1 (acoustic resistance Ra) and 7.2
(acoustic inertance M) and definition 5 (acoustic stiffness
Ka) the acoustic impedance can be written in analogy with
definition 2, and the following names are given:

Ra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .resistance

Xa = Xma + Xca  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .reactance

Xma = ω m
A2

 = ω M ..... . . . . . . .  . . . . . . . . .mass reactance

Xca = - 
ρ c2

ω V
 = - Ka

ω
  .......... ...compliant reactance

Definition 8' (acoustic admittance Ya,  eqs.  (23'))

Ya = Ga + i Ba = Ga + i (Bma + Bca), .... unit: cm4 s
g

 = 1
Ω

10-3 1
Ω

 = 1 mmho

Ga = Ra

Ra
2 + Xa

2
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .conductance

Ba = - Xa

Ra
2 + Xa

2
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  susceptance

Bma = - Xma

Ra
2 + Xa

2
 . . . . . . . . . . . . . . . . . . . . .  mass susceptance

Bca = - Xca

Ra
2 + Xa

2
 ............... compliant susceptance

                                              or stiffness susceptance
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Fig .  1 :  GaRa and BaRa as a funtion of Xa/Ra. At |Xa|/Ra = 1 Ga Ra and Ba
Ra have the same size. At resonance GaRa = 1 and BaRa = 0.
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Fig .  2 :  Oscillation plotted in {GaRa, BaRa} plane lies on a circle with radius
1/2, because GaRa2+ BaRa2 = (1/2)2 for all Xa/Ra. The angle α will be used to
calculate Ra from Ga and Ba.



Fit of Ra to multifrequency tympanogram Ga(f) and
Ba(f)

Definition of  (see Fig. 2)

GaRa - 12
 = 1

2
 cos α                                                         (24)

 BaRa = 1
2

 sin α                                                              (25)

From (23), (24) follows
Ga
Ba

 =  1 + cos α
sin α

                                                               (26)

Proof:
(24)

(25)
 = 2 GaRa

2 BaRa

 =  1 + cos α
sin α

Multifrequency tympanogramm gives Ga(f) and Ba(f) . Thus (26) is
a function of the immission frequency f. (26) can be solved for α
as a function of f.

With (25) Ra can be fitted to the tympanogram

Ra(f) = 
sin α(f)
2 Ba(f)

                                               (27)

Definition 9 (resonance frequency r)
Let the frequency at which the reactance Xa and susceptance Ba vanish be called resonance frequency ωr of the system:

ωr m
A2

 = 
ρ c2

ωr V
 . Solving for ωr

ωr = 2πfr = A c 
ρ 

V m                                                                                                                                                   (28)

At resonance ωr conductance and resistance are simple reciprocals of each other:

Ga = 1
Ra

Data:

ρ c2 = 1.42 106 g
cm s2

                                                (d1)

At f = 226 Hz
ω  = 2π f = 1.42 103 s-1                                              (d2)

Plugging (d1) and (d2) into the definition of Xca above

Xca = - ρ c2

ω  V
  = -  103g

cm s
 1
V

                                            (d3)

A volume V = 1 cm 3 of air has a compliant reactance

Xca = -  103g
cm4 s

 = 103ohm

At high  positive or negative ear canal pressures the tympanic membrane is
almost fixed and the middle ear is nearly motionless (meff ≈ 0, Ra ≈ 0) the
admittance Ya ≈ Ba ≈ Bca (the latter because Xma << Xca) with

 Bca = ω  V
ρ c2

Since Bca can be determined experimentally, the ear canal volume V can be
calculated from this equation. At f = 226 Hz
Bca = 10-3 cm s

g
 V.

A volume V = 1 cm 3 of air has a compliant susceptance

Bca = 10-3 cm4 s
g

 = 1 mmho



III. Parameter determination from multifrequency tympanometry

III.1 Single resonance frequency system

Fit of V and m/A2  to Xa/Ra

Use definitions (23) of Xma and Xca:

Xma = ω m
A2

                                  (23.1)

Xca = - 
ρ c2

ω V
 = - Ka

ω
                      (23.2)

• Plot log|Xa| as a funtion of logf as shown below.
• Intersections of asymptotic lines with y-axis at logf = 0  give

• V and
• m/A2.

log f (f in Hz)

log 2πm
A2

- log ρc2

2πV

lo
g 

|X
 | 

(X
  i

n 
oh

m
)

a
a

Fig .  3 :  Extrapolation of Xca(f) and Xm(f) yields V and m/A.



Another possibility: Ear canal cross section A together with oscillating mass m can be fitted to the resonance frequency fr.
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Fig .  4 : Plot of contours of constant resonance frequency fr as a funtion of the ear canal radius r and the oscillating effective mass meff.
Example marked by arrows: for r = 0.37 cm and meff = 0.002 g the resonance frequency is fr = 1140 Hz.

As the contour plot Fig. 4 shows, a possible choice for
fr = 1140 Hz
is
A = r2 π = (0.37 cm)2 π
ρ = 0.00129 g/cm3

V = 1.36 cm3

m = ρV + meff = (0.0018 + 0.002) g = 0.0038  g .

III.1.1 Example

Choice of dependence of V on ear canal pressure p:

V(p) = V0
2

  (1 + e- |p|

TW ),                                                                                                                                             (29)

m(p) = ρ V(p) + meff e
- |p|

TW.                                                                                                                                        (30)

Data used in Example:

V0 = 1.36 cm3, TW = 40 daPa = 400 Pa  ( 1daPa = 10 Pa)
meff = 0.002 g, Ra = 1000 ohm, r = 0.37 cm, ρ = 0.00129 g/cm3.                                                                            (31)
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Fig .  5 :  Plot of the two components of the reactance as functions of
immission frequency f. Heavy curves represent mass reactances, light curves
compliant reactances. Curve parameter is the ear canal pressure. Curves are
plotted for p = 0 and p = 400 daPa. (for implementation of p see (29) and
(30)).
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Fig .  6 :  Plot of total reactance as a function of immission frequency f for
fixed ear canal pressures p = 0 and p = 400 daPa. At resonance Xa is 0.

Definitions:
• resonance: Xa  = 0.
• equivalence: |Xa|/Ra = 1.
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Fig .  7 :  Plot of total reactance as a function of ear canal pressure p. Curve
parameter is the immission frequency f. Curves are plotted for f =113 Hz and
the following 6 octaves above 113 Hz.



Conductance GaRa
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Fig .  8 :  GaRa as a function of both ear canal pressure p (daPa) and immission frequency f (log f is used, with f in Hz).
Left: 3D-plot, p is plotted along the x-axis (range: -400 daPa ≤p ≤ 400 daPa), log f is plotted along the y-axis (range: 2 ≤ log f ≤ 3.7).
Right: 2D-plot GaRa(p) with f as parameter, i.e for f fixed at 226 Hz and the 5 following octaves above 226 Hz.
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Fig .  9 :  Detail of Fig. 9 near resonance at zero ear canal pressure p = 0.



Susceptance BaRa

p

226 Hz

7232 Hz

904 Hz

equi-
valence

452 Hz

1808 Hz

3616 Hz

113 Hz

B
 R a

a

Fig .  10 :   BaRa as a function of both ear canal pressure p (daPa) and immission frequency f (log f is used, with f in Hz).
Left: 3D-plot, p is plotted along the x-axis (range: -400 daPa ≤p ≤ 400 daPa), log f is plotted along the y-axis (range: 2 ≤ log f ≤ 3.7).
Right: 2D-plot B aRa(p) with f as parameter.
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Fig .  11 :  Detail of Fig. 10 near equivalence frequency at zero ear canal pressure p = 0.



Admitttance YaRa
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Fig .  12 :   YaRa as a function of both ear canal pressure p (daPa) and immission frequency f (log f is used, with f in Hz).
Left: 3D-plot, p is plotted along the x-axis (range: -400 daPa ≤p ≤ 400 daPa), log f is plotted along the y-axis (range: 2 ≤ log f ≤ 3.7).
Right: 2D-plot YaRa(p) with f as parameter.
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Fig .  13:   Detail of Fig. 12 near resonance at zero ear canal pressure p = 0.



Graphical Construction of GaRa(log f),  BaRa(logf)

                                    GaRa                                                  BaRa
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Fig .  14:  Graphical explanation of shapes of curves in Figs. 8 - 11:
Lower plots: Xa/Ra as functions of f for fixed p = 0 and p = 400 daPa (see Fig. 6).
Upper plots: GaRa and BaRa as functions of Xa/Ra (see Fig. 1).
To obtain a value GaRa for a given immission frequency f
(1) choose f and read Xa/Ra from lower plot (follow line 1 in direction of arrow),
(2) then read GaRa for Xa/Ra (follow line 2 in direction of arrow).



III.2 Coupled Systems
(fit of acoustical behavior with an electrical network model after Zwislocki)

1 2

in series

Fig .  15  Electrical system composed of 2 subsystems (1) and (2)
arranged in series.

parallel 1

2

Fig.  15' :  Electrical system composed of 2 subsystems (1) and (2) arranged in
parallel.

Definition 10: complex electrical resistance
-"impedance", Z

(Li d2

dt2
 + Ri d

dt
 + 1

Ci
) = Zi                                        (32)

Observation: Ohm's Law for complex resistance.

Let U be the voltage between entrance and exit terminals of
a system i and qi the electric charge in system i. Then the
charge qi is proportional to the applied voltage U:
Z1 q1 = U
Z2 q2 = U

                                                                (33)

The same is true for a composite circuit:
Z q = U                                                                   (34)

Observation:

The flow of charges through subsystems arranged in series
is the same in each subsystem:

q = U1
Z1

, q = U2
Z2

                                                       (35)

Observation:

Charges in parallel subsystems add up in composite circuit:

q = q1 + q2.                                                                (35')

Theorem 6: Composite resistances

The composite resistance Z of a system composed of
subsystems arranged in series is:

Z = Z1 + Z2                                                           (36)

Proof:

Definition of Z: q = U
Z

                                                   (37)

From (35) follows: U1 + U2 = q (Z1 + Z2). Comparison with (37),
the definition of Z ( i.e. with U = q Z) follows Z = Z1 + Z2.

Theorem 6': Composite resistances

The composite resistance Z of a system composed of subsystems
arranged in parallel is calculated as:

Ya = Ya1 + Ya2                                                          (36')

Proof:
Plugging in observation (35') into Ohm's Law (34)

Z ( U
Z1

 + U
Z2

) = U. Simplification yields proof 1
Z1

 + 1
Z2

 = 1
Z



III.2.1 Example: 2-Component system with subsystems arranged in parallel (Fig. 15')

Data used for calculations (values chosen arbitrarily, i.e. not with respect to a particular electrical middle ear model):
(Mathematica MR 1, 2 "2-Component System")

meff1 := 0.1 g;  R1 := 1000 ohm;
meff2 := 0.01 g;  R2 := 300 ohm;

r1 := 0.4 cm;   r2 := 0.37 cm;
V1 := 0.9 cm3; V2 := 0.2 cm3;
ρ1 :=  0.001 g/cm3;  ρ2 := 0.00129 g /cm3;
TW = 40 daPa.
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Fig .  16:  Conductance Ga and susceptance Ba plotted as functions of immission frequency f. Because of (36') Ga = Ga1+ Ga2, and Ba = Ba1 + Ba2.
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Fig .  17:  Resistance of the composite system as a function of immission frequency f.
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 Fig .  18:  Oscillation of composite system in {Ga, Ba} plane. The
point {Ga,(f) Ba(f)} runs on the curve in the direction indicated by the
arrows, when f runs from 100 Hz to 4111 Hz. The circle has been
drawn to emphasize non-circular form of curve.
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Fig .  19:  Oscillation of composite system plotted in {GaRa, BaRa} plane lies
on circle with radius 1/2. The reason for this is the linearity of the composite
system: The oscillation of each subsystem lies on this circle (see  Fig. 2), thus
the linear composition of these oscillations lies on that circle, too. The curve
drawn by hand indicates how the point {GaRa, BaRa} runs on the circle when f
runs from 110 Hz (arrow near {0.6, 0.4}) to 4060 Hz (arrow ending near {0.1,
-0.1}).

III.3 Fit of measured tympanometric data with linear model

In Fig. 17-17, R.H. Margolis and L.L. Hunter present a multifrequency tympanogram (R.H. Margolis and L.L. Hunter,
Acoustic Immission Measurements, Ch. 17 of Audiology: Diagnosis, R.J. Roeser, M. Valente, H. Hosford-Dunn, Thieme,
New York, 2000). At an ear canal pressure p = - 250 daPa the tympanic membrane had the highest mobility. Ga and Ba
measured at this ear canal pressure are plotted as functions of the immission frequency f in Figs. 20 and 21.

Fig. 22 results when these Ba are plotted vs. Ga.

These data will be analysed with a linear model. This means that the deviation of the curve in Fig. 20 from a circle will be
interpreted as resulting from a frequency dependent resistance Ra(f) according to (27). This may or may not be justified. It is
simply a method of condensing the measured data into a set of equations (the ones developed in this paper) and corresponding
parameters (necessary to evaluate the equations).

After calculating Ra(f) with (27) (Fig. 23), BaRa is plotted vs. GaRa, resulting in Fig. 24. These data plotted are plotted {GaRa,
BaRa} plane. The curve in Fig. 24 drawn by hand indicates how the point {GaRa, BaRa} runs first clockwise and finally
counterclockwise on the circle when f runs between 230 Hz (arrow at beginning of clockwise part) and 1930 Hz (arrow at end of
counterclockwise part). The circle crosses the abscissa (GaRa-axis) at f = 1350 Hz.
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Fig .  20 : Conductance Ga as a function of the immission frequency f.
The ear canal pressure is - 250 daPa. Data from Margolis and Hunter.
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Fig .  21 : Susceptance Ba as a function of the immission frequency f. The ear
canal pressure is - 250 daPa. Data from Margolis and Hunter. Resonance
frequency fr is defined here as the frequency at which Ba = 0 (fr = 1350 Hz,
dashed line).
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Fig .  22:  Ba(f) plotted vs. Ga(f). Ba(f) and Ga(f) as presented in Fig.
20, 21 (from Margolis and Hunter). The curve starts at fi =  226 Hz
and ends at fi = 2000 Hz.
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Fig .  24:  Ba(f)Ra(f) plotted vs. Ga(f)Ra(f). Data from Margolis and
Hunter.
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Fig .  23:  Resistance extracted from oscillation presented in Fig. 22 with
method given by eq. (27). Immission frequencies fi used by multifrequency
tympanometer are marked as dots in lower part of graph. They start at fi = 226
Hz and end at fi = 2000 Hz. Dashed line marks resonance frequency fres = 1350
Hz. Sampled frequncies fi miss resonance fr.
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