Immunology Refresher 10/4/12 11:04 PM

Immunology Refresher

Immune System

A coordinated system of cells, tissues, and soluble molecules that constitute the body's defense against invasion by nonself entities, including infectious and inert agents and tumor cells. 1

The immune system has 4 key tasks²:

- 1. Recognition: Detect infection or harm
- 2. Effector function: Contain and eliminate infection
- 3. Regulation: Control activity to avoid damage to the body
- 4. Memory: Remember exposure; react immediately and strongly upon re-exposure

Innate and Adaptive Immunity²

Immune System

INNATE IMMUNITY

- Nonspecific
- · Present at all times
- · Immediate but general protection
- · Activates adaptive immune response
- Does not improve with repeated exposure to a pathogen

ADAPTIVE IMMUNITY

- Develops in response to infection
- Protective against specific pathogens
- Leverages components of the innate response
- Develops memory, which may provide lifelong immunity to reinfection with the same pathogen

See Innate Immune Response in RA

See Adaptive Immune Response in RA

Immunology Refresher 10/4/12 11:04 PM

COMPONENTS	FUNCTION	COMPONENTS	FUNCTION
Macrophage	Phagocytosis Activation of bactericidal activity Antigen presentation	T lymphocytes	T cells fall into 2 broad classes according to function • CD4* T helper cells (Th) that orchestrate and regulate
Dendritic cell	Antigen uptake in the periphery Antigen presentation		CD8* cytotoxic T cells (CTL) kill cells infected with viruses or other intracellular
Neutrophil	Phagocytosis Activation of bactericidal activity		pathogens • All T cells secrete cytokines
Other myeloid cells (eg, eosinophils, basophils, mast cells)	Kill antibody- coated parasites Release histamine granules and other pro-inflammatory mediators	B lymphocytes	Produce antibodies in response to antigens Antigen presentation Cytokine secretion
Natural Killer cells	Release lytic granules to kill some virus-infected cells	Antibodies	Bind to antigens to neutralize them or facilitate destruction of microorganisms
Complement	Soluble proteins that form a complex to destroy microorganisms		
Cytokines	Proteins secreted by cells that affect the behavior of nearby cells bearing appropriate receptors	Cytokines	Proteins secreted by cells that affect the behavior of nearby cells bearing appropriate receptors

Take Action to Learn More

Understanding JAK Pathways >

Discover more about JAK pathways and how they are related to inflammatory and autoimmune diseases such as rheumatoid arthritis (RA).

Behind the Science >

Watch leading scientists discuss the JAK pathways.